
Int. J Hror Moss Transfrr. Vol. 19. pp. 61-69. Pergamon Press 1976. Pnnted in Great Britain 

REGULAR EXPANSION SOLUTIONS FOR HEAT OR MASS 
TRANSFER IN CONCENTRATED TWO-PHASE PARTICULATE 

SYSTEMS AT SMALL PECLET AND REYNOLDS NUMBERS 

I. YARON* 
Department of Fluid, Thermal and Aerospace Sciences, Case Western Reserve University, 

Cleveland, OH 44106, U.S.A. 

(Received 23 May 1974 and in revisedform 18 March 1975) 

Abstract-General solutions for small Peclet number heat or mass transfer in concentrated two-phase 
particulate systems submerged in arbitrary Stokesian flows with arbitrary temperature or concentration 
boundary conditions were obtained using regular perturbation expansions of the dependent variable in 
powers of the Peclet number. Uniformly valid solutions for all orders of approximation were obtained 
within the domain of interest, subject to a restriction imposed on the value of the Peclet number by 
the dimensions of that domain. The solutions were specialized to cases of practical interest. For a 
particulate system submerged in a uniform flow with a linear temperature gradient in the direction of 
flow, the results reduced to those of Maxwell for effective electrical conductivity of a composite medium. 
Specific relations were also obtained for local and overall interfacial fluxes and Nusselt numbers. The 
results reflect the effects of particle volume fraction and retardation of internal circulation by 

surfactant impurities. 

NOMENCLATURE 

a, radius of typical particle; 

;, 
concentration; 
molecular (binary) diffusivity; 

G, rate of shear; 
G(q, q’), spherical Green’s function defined in 

equation (21); 

9, acceleration due to gravity; 
g,,,(q, q’), radial component of spherical Green’s 

J, 
k, 
k dir 

function, defined in equation (22); 
interfacial flux; 
thermal conductivity of homogeneous phase; 
effective thermal conductivity of two-phase 
system; 
distribution coefficient; 
associated Legendre’s function of degree n, 
order p; 
overall rate of interfacial heat transfer; 
radial distance; 
solid surface harmonic of degree n; 
temperature; 
unit vector in spherical coordinates system; 
uniform reference velocity; 
terminal sedimentation velocity; 
volume ; 
nondimensional velocity vector. 

Greek symbols 

6 thermal diffusivity; 

B> viscosity ratio; 

Y, reciprocal nondimensional radius of 
spherical cell; 

*Present Address: Research and Development Authority, 
Ben-Gurion University of the Negev, Beer-Sheva, 84110, 
Israel. 

“interfacial retardation viscosity” defined 
in [4]; 
thermal or molecular diffusivity 
([ = c( or [ = D); 
nondimensional radial distance; 
cone angle ; 
viscosity; 
thermal conductivity, or molecular 
diffusivity ; 
density; 
volume fraction of dispersed phase; 
azimuthal angle; 
dependent variable (tj = T or tj E c). 

Subscripts 

radial ; 
cone; 
azimuthal; 
values of dependent variable at antipodal 
points of spherical cell; 
in equation (22), the smaller, greater value 
between 9 and ?I. 

Superscripts 

6 indicates phase in general; 

c, pertains to continuous phase; 
d, pertains to dispersed phase; 

0, pertains to unperturbed field conditions. 

Special signs 

Q, nondimensional differential operator 
defined in equation (A7); 

-, average quantity. 
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INTRODCCTION 

IN PREWOUS publications L1.5, 161 it has been pra- 
posed. that problems of low Fe& number heat or 
mass transfer in concentrated two-phase particulate 
systems with dominant resistance to interfacial transfer 
in the continuous phase, can be solved by regular 
perturbation expansions of the temperature or concen- 
tration in powers of the Peclet numbers. The spherical 
cell, of non-dimensional radius ;‘-I, was employed to 
statistically represent a multiparticle assemblage [3], 
and uniformly valid solutions were obtained for all 
orders of approximation within the domain of interest 
1 <r7 <y-l. The solutions obtained were subject to 
the restrictive relationship PC CC ;’ < I. 

In the present work the previous analyses are general- 
ized to multiparti~le assemblages submerged in arbi- 
trary Stokesian flows and subjected to boundary con- 
ditions of the most general nature. Furthermore, the 
analyses are extended to systems with resistances to 
transfer in both phases of comparable magnitude. The 
general solutions obtained reflect the effects on the 
transfer processes of the volume fraction of the dis- 
persed phase @ and of adventitious surfactant im- 
purities, adsorbed at the particles’ interfaces. The solu- 
tions are then specialized to cases of specific interest, 
and the results are empIoyed to calcufate rates of inter- 
facial transfer, and average bulk properties, e.g. elective 
thermal conductivity, of multiparticle systems. 

It should be emphasized here. that in view of the 
statistical nature of the spherical cell model employed 
in the present analysis to represent the multiparticte 
assemblage, all the results predicted by the present 
theory should be regarded as ensemble-averaged 
expected values. 

THEORY 

Stutemvnt o[tke Prohtem 

Consider a uniformly-sized assemblage of rigid or 
deformable particles approx~ate~y spherical in shape. 
The assemblage is submerged in a steady arbitrary 
Stokesian flow and is pfaced within an arbitrary 
temperature or concentration field (here termed the 
unperturbed field). The assemblage is substituted in the 
statistical sense by a spherical cell of the continuous 
phase material enclosing a typical particle of the dis- 
persed phase. 

With the simplifying assumptions of: (a) Steady 
transport processes; (b) Slow viscous motion of incom- 
pressible, homogeneous, isotropic, Newtonian fluids in 
each phase; (c) Constancy of physical properties; (d) 
Absence of sources and sinks; (e) negligible viscous 
dissipation, compressive work, radiative heat transfer, 
and natural convection; (f) Negligible thermodynamic 
coupling [IT]; and (g) Negligibte transfer-induced 
interfacial fluxes [4]; the conservation of energy and 
chemical species equations for each homogeneous, 
isotropic phase c( are unified into 

PeY VIJY = vlp. (1) 

where in general 

Pe’ z &r21’ix. (2) 

I= Cell boundary 

; 
Representative 

particle 

FIG. 1. Geometry o~sphericai cell and 
coordinate system. 

In equation (1) 3 = T for heat transfer and $ = c for 
mass transfer. Accordingly, in equation (2) i = o[ or 
[ = D for heat or mass transfer, respectively. 

The solutions of equation (1) must satisfy the follow- 
ing boundary condition, consistent with the statistical 
representation of a multiparticle system by the cell 
model (see Fig. 1 for geometry of the system). 

~~=~O(~,~~ at Q==;‘-~. (3) 

They also must satisfy the foJlowi~g set of iaterfacial 
matching conditions 

J/‘= m$d, ] (4) 

where { = k or < = D for heat or mass transfer, 
respectively. Note, that the distribution coefficient 
m = 1 for heat transfer. 

Furthermore, it is required that there be no singu- 
larities associated with the solutions for ri/” at the origin. 

For small Peelet numbers, i.e. Pe” << 1, the solutions 
of equation (1) may be obtained by means of a regular 
perturbation expansion of @ in terms of powers of 
Fe”, namely 

$” = j$O tPe”Jj@j), (‘4 

whereby the following set of linearized equations results 

V".VII/~j_1, = V.(V"~~-*,)= V"*;,. (7) 

Application of the expansions (6) to the boundary and 
the interfacial matching conditions (3)~(5) resuIts in 

Here Sj = m(ri;d)j, 

and 



It is apparent, that the requirement of absence of 
singularities at the origin applies to all I,&$, , 
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and particular solutions of the Poisson-type equations 

V2@oh, = FTj)t 

1 
Zero Order Solutions 

Vl@~) = 0, 

v&, =L ~l?t y,F?j~t$FZtttr Q")dv. 

s 

(20) 

In soiutions (20) the spherical Green function in 
spherical coordinates is given in Jackson’s [7] notation 

by 

(12) 

The zero order solutions are treated separately from 
the higher order ones in view of the i~homogeneous 
boundary condition (8). The solutions of the zero order 
Laplace equations 

in spherical coordinates are sums of solid spherical 
harmonics, which are expanded in terms of solid surface 
harmonics in the form 

Assuming that the unperturbed field can also be rep- 
resented in the form 

tie = c (JkOyk+J_Ok-lq-k-l)Sk(O, c$), (14) 
oc 

k=O 

The particular solution can in general be represented 
in the form 

s+m 

\I/;ia = 4zo xti)q(?)sq(o, #I. (23) 

Applying the linearized boundary and interfacial 
matching conditions f9)-(ll), utilizing again the or- 
thogon~ity properties of solid spherical harmonics, 
and soiving the resulting set of algebraic equations, 
one finds 

applying the boundary (8) and the interfacial matching 
conditions (IO) and (ll), restricting the spherical har- 
monics in the solution for the dispersed phase to 
positive degree only in view of the requirement for the 
tack of singularities at the origin, utilizing the orthog- 
onality properties of solid surface harmonics, and 
solving the resulting system of algebraic equations for 
the unknown coefficients J&j,, Jfo,_,.. I and Jtoa in 
terms of the known, but yet arbitrary coefficients Jf and 
.I!,_ 1 of the unpertur~d field, one obtains 

Jfoh = 

and 

General ~ui~t~~~s~r tiger Orders ?~~ppr~x~mati~~ 
A formal scheme of solutions is now presented for 

the higher orders of approximation. For any jth order 
equations 

V.(V3(~~_1)) = v’~t,, 
(18) 

the left-hand side v” and I,&_~, are known functions, 
such that V. (V”t@j-1%) m Fc, are also known function. 
Then, equation (18) will have general solutions, com- 
posed of homogeneous parts, resulting from the homo- 
geneous Laplace equation V2&,, = 0, of the form 

s+Wl 

vW, z - [EjX&g(l) - Xi&(l)]. av 
The derivations of expressions for X&&) are pre- 

sented in Appendix A. This completes the general 
solutions for the higher orders of approximation. 

Illustratioe Examples 
1. Un$orm unperturbedfield 

For the case of a uniform unperturbed field, in equa- 
tion (13) k = 0, S& (p) = 1, and Js), = 0, whereby 
41/O = J$. Then, from equations (1.5)~(17) one finds that, 
as long as [“/cd # 0 and m is finite, JfO,O = fi, J&_, = 0 
and .I$,, = (l/m)JoD. This indicates, that the tempera- 
tures or concentrations in each phase are uniform, 
that both contracting phases are in complete equilib- 
rium, and that, accordingly, no interfacial transfer 

q=v takes place. 

J;,, = 

V(j),6jy2'+' - U(j),EjYZq+l + T(j),1;q(q6j+qEj+hj) 

4f6j-Ej)($Zq+’ 

----, (24) 
-1)+6j(24$+ I) 

Jij)_,_, = 
To),4Yq(Gj-ej) + U&Wj- Vt~?,~j 
~(6j-&j)(Y2q+1-1)+6j(2~+l) ’ 

(25) 

and 

where the following functions were defined; 

T(j), Z -x~j),(Y-')t 

and 

B 
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2. Linear gradient ofthe unperturbedfield 
(a) Uniform pow. Two different orientations of the 

linear unperturbed field gradient with respect to the 
direction of the uniform flow are considered. 

(i) Linear gradient co- or countercurrent to the uni- 

form flow. When the linear temperature or concen- 
tration gradient of the unperturbed field is directed 

parallel to the axis 13 = 0, 0 = n. in equation (17) 
k = 0 and k = 1, with S1(B, 4) = cos H. Then, 

lclO= f[(~z-~l)cose+(IClz+11)1. (27) 
To order (Pe”)’ the distributions $’ and $” are then 

obtained from equations (6), (15)-( 17), (19), (23)-(26), 

(A2) and (A3), whereby 

$‘= (Jfo,, V+Jfo, ,rl-2)cos@+Jfo,,, 

+Pec[(Jfl,,~2+J;,,~,~-3+Xfl,,)(~cos261-:) 

+Jf,,,,+Jf,,~ I~-l+XfI,,,l +O(Pe’)‘, (28) 

and 

@” = $o,, rl cos 0 + J;ok, 

+Ped[(Jh,,r2+X~~,,)(:cos2e-f) 

+ J$,, + X;l,,,,l + O(Ped)‘. (29) 

In solutions (28) and (29) the first order terms should 
be taken with the positive sign if the linear gradient 

is cocurrent, and with a negative sign if countercurrent 
to the flow, respectively. Derivations leading to solu- 
tions (28) and (29) and the functions Jfo,, , J&_ 2, . , 
etc., are listed in Appendix B. 
(ii) Linear gradient normal to the direction of uniform 
flow. When the linear temperature or concentration 

gradient of the unperturbed field is normal to the axis 
0 = 0, B = 71, the distributions I/J” and id are to order 

(Pe”)’ given by 

$’ = (Jfo,, 9 +J&_ i q- 2, sin @sin 4 + Jfo,,, 

+Pecf(J;1,,~2+Jf1)_,~~3+X;1)2) 

x 3 sin 0 cos B sin 4 + O(PeC)‘, (30) 

and 

II/” = Jpo,, ‘1 sin 0sin 9+.JC,, +PeY(J$j, $+ X$,,) 

x 3sinBcosBsi11f$+O(Pe~)~. (31) 

In equations (30) and (31) the functions Jfo,, , Jf,, _ 2, 
etc. are identical to those in equations (28) and (29). 

(b) Homogeneous shear pow. With the linear tem- 
perature or concentration gradient of the unperturbed 
field oriented co- or countercurrently to the direction 
of the flow, the distributions of @ and $d to order 
(Pe”)’ are now 

@ = (Jfo,,rl+Jfo,~,?-2)~os~+J~o,o 

+Pec(Jf,,,r13+Jfi,~,~-4+Xfi,,) 

x 15sin2~sin20cosB+O(Pec)2, (32) 

and 

$” = JPoj, v cos B + J&, + Ped(JPI1, r3 + X$,,) 

x 15sin2+sin2fIcosB+O(Ped)~. (33) 

In the above equations Jfo,,, .I&- 2, Jfo,,, J~o,, and 
Jto,, again have the same significance as before. The 
functions Jfi,,, J&,,, Jh,,, X;,,, and X,4,, are listed in 
Appendix B. 

l@ctive Thermul ConducticitJ 
It is now possible to employ the various distributions, 

given by equations (28)-(33) to evaluate average bulk 
properties. Restricting the treatment to heat transfer, 
the bulk property of effective thermal conductivity of 

the multiparticle system is calculated for all the 
illustrative cases from the standard operational defi- 
nition as the ratio of the heat flux in a given direction 
to the mean temperature gradient in that direction. 

Thus 

k =_%__, rff 
AT7UQ~ 

(34) 

The overall rate of heat transferred in the co- or 
countercurrent situations is found in a manner, similar 

to that employed for determination of the average 

relative velocity between the phases [13], namely 

Introducing the values of TC and Td from distributions 
(28) and (29), and (32) and (33), it is found, that to 
order (Pe”)’ in both cases 

k 
$= 

Expression (36) can be readily recognized as Maxwell’s 
[lo] result for the effective electrical conductivity of a 

composite medium. It is not too difficult to verify, that 
an identical result is obtained from distributions (30) 

and (31) for the case of a linear temperature gradient 
normal to the direction of the uniform flow. It is 

interesting to note, that the first order convective terms 
do not contribute in these cases to the effective thermal 

conductivity. 

Interfucial Transflr 
The local interfacial fluxes are defined by 

% 
(J,,=I = -i” d? 

( ! 
rl=l. (37) 

For the case of a linear gradient of the unperturbed 
field co- or countercurrent to the direction of the 
uniform flow, the surface distribution of interfacial 
fluxes is then, from equations (28) and (29) 

(J),=I = 

- [” 
i 

Jpo,, cos 0 t Ped 
ii 

uf,,,+~(x&,),_, 1 
x (~c0s2e-i)+~(x~l,~),,=1 

arl 
+O(Ped)‘. (38) 



Finally, when the linear gradient is co- or counter- 
current to the direction of the ~~moge~~~us shear 
(Couette) fxow 

x I5 sin Z@ sin2 B co:09 B + U{Ped)2. (40) 

It is interesting to observe, that the average inter- 
facial fluxes d&Ed by 

are found to order fP&’ for all t&e above cases tcr tpt 
equal to zero. 

~jnear~~tj~~ af the unified ~~~se~at~~n of energy 
and chemical species equation by ib re~lar~~nrb~t~o~ 
expansion of the de~ndent variables in terms of power 
series of the small P&et numbers permitted to obtain 
general satutions for ~o~~entr~t~ two-phase partieu- 
late systems, submerge in arbitrary, Stoke&an flows 
within arbitrary temperature on concentration unper- 
turbecf fields. Convergence of the solutions for any order 
of ap~rox~a~~~ was achieved by satisfying -the noa- 
~orno~n~us bo~~~d~r~ ~ondj~~o~ in the zero order of 
approximation solutions, and subjecting higher order 
solutions to homogeneous boundary conditions. The 
general t~rn~r~~ur~ or ~o~~~tr~~~on d~str~b~t~~~s 
derived are uniformly valid within t’he domain of the 
spheri~l celf ~~~l~~~d to st~t~sticaII~ represent the 
multiparticle assemblage, subject to the restrictive 
reIati~~sh~~ Pe C< ;’ < I+ The tern~~at~~ or concen- 
tration distribution, and other quantities derived there- 
of should, of course, be viewed as average expected 
quantities, characteristic, in the statistical sense, of the 
entire system, rather than actual djs~~but~o~s~ tikdg 
to be ~~~~~~~~r~ around any pardcular particte. 

The general sotutions were first specialized to (t 
system, placed within a unifarm unperturbed field, It 
was shown, thai, unless it be assmned that the con- 
ductSty or dj~~sivj~~ ofthe dispersed phase is in&&e, 
there w be na interfacial transfer between the phases. 
Since this conclusion involves the leading term of pure 
radial ~~nd~~t~~~~ it applies equally well to the east: 
ofa single particle submerge in an infinite, uubo~~~~ 
field, with uniform conditions at infinity. Hence it seems 
that those numerous analyses (e.g. [l, 81 etc.) which 

have the case of pure radial ~o~dn~~~n from an 
isotherms particle as ii stating point for low PecIet. 
number expansions of one kind or another, are in 
essence physically unrealistic. 

The s~~~ali~atio~ of the general solutions next to 
cases, in which the rnulti~~~~~~le system was pfaced in 
an un~rtur~ Eeld with a linear gradient, showed 
that the leading term for zero E%det number is 
identical viiich chat given by Maxwell for &Wric con- 
ductivicy of composite medium. Maxwell claimed that 
his results apptg strictly to dilute systems, in which 
interaction effects between particles are not taken into 
account. However it has been showfi since in ~~rnerous 
~~~~s~~~~~~~~s (e.g. 12% $1 I] etc.) that ex~r~m~~tal data 
on effective rhermal ~o~d~~tivjty in ~~~~~~~a~~ sys- 
tems are also adequately carrelated by Maxwell’s 
formula. As a paint of interest, in Table 1 the recent 
data of Sin@ et al. [K?] for the effective thermal con- 
ductivity of metal wicks, saturate with water, is mm- 
pared with values, predicted from equation (36). The 
satisfactory agreement between the ex~rimentai data, 
and theory, parti~uI~1~ in the range of higher con- 
~ntratiff~~s is noteworthy. 

Table 1. E%ctive thermal conductivity of water 
saturated wicks, data of Singh et ad, Et21 

In the expressions derived for efkctive thermal con= 
du~t~v~ty and ~nrf~~-~ve~~ed inte~a~al tra&er_ in 
the cases considered, first-order effects due to convex- 
tion are absent. However, it is evident fram previous 
investigations of cases with dominant resistance in the 
~~tinuo~s phase [IS], that secmd-order terms do 
appear. A~ord~ngl~, the expressions &It differ from 
case to case. Their use in situat,~~ns, other than those 
for which they have been derived, is, therefore, un- 
warranted, even on an ad hoc basis. fr is conceivablnfe: 
that in other cases, not considered here, even first-order 
convective effects may appear, which may make in- 
d~s~r~m~flate use ofvalues, based on the zero-order pure 
~~u~~o~ case? even more erroneous. 
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APPENDlX A 

In the linearized equations (7) the dimensional velocity 
vector V” is given by Lamb’s [9] general solution of the 
steady creeping flow equations in spherical coordinates 

Recall that the solid spherical harmonics are expanded 
in terms ofsofid surface harmonics in the f&lowing manner: 

* = ~~d~~~-i.~~~~{~, 4). e = ~~C~“ff_~D~.~~~, 9). 

E:_,_, = /1’t~-“-‘u-‘G,S,(U,rb). #; = r/“aB,&,(f!, cfi,, 

I$: = ?y”nE,S,(B.~), @_,_I = ~-“-‘aH”S,(B,qN. 

r”, = rl”C”s!#i@> 41. z; = 9”F,Sn(ff. ipI, 

X”-n-t = 4 -“-*4&(& 4). 

In these expansions, the coefbcients A,, I$, . . . , & are ex- 
pressed in terms of c~e~cien~ Q*. iz,* . . , :‘_*_ I of a known, 
aith~ugh as yet arbitrary ftow field. For lack of space, these 
c~e~cients are not listed here, but may be found in [ 14]. Zt 
should be noted, that the products A,&, B,S,, . .., rep- 
resent expansions of the general forms 

Using now expression (Al) for the velocity vector and after some rather lengthy computations it is found, that 

G),frl) ;hn$& F F zg,” [: i)l‘; [(I bti’IgO’ f~‘[J~-~,,J~‘+“-‘fx~_~,,(~‘)~‘“-’] 
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In expressions (A2) and (A3) the notation of Haber and 
Hetsroni [6] is adopted to define 

ll+k 
$&G c gl,$, (A4) 

“fk 

and 
n+k-l 

P.($Px t,s”)E 1 fysi, 

with the nondimensional differential operator 

(‘46) 

(A7) 

APPENDIX B 

I 
For uniform flow parallel to the axis 0 = 0,0 = II, in 

equations (Al) n = 1 and p = 0. The various coefficients in 
the expansions of the solid spherical harmonics are [ 161 

with 

A1 =&,-*(Y,-W1y), 

Y1 = 2(1+8,)+3yV-38,), 

w, = 3(1+3/G) + 21’V -81), 
and 

j,= PC 
m’ 

Here, $, is a parameter, termed the “interfacial retardation 
viscosity”, which reflects the effects of adventitious surfactant 
impurities, adsorbed at the interface, on the rate of internal 
circulation within the particle. The functional dependence 
of this parameter on the mechanisms of surfactant adsorp- 
tion-desorption and surface diffusion and convection is fully 
discussed in [14]. 

The velocity vector is nondimensionalized with respect to 
the uniform velocity U, and the Peclet number defined by 
Pe = au,/<. Note, that the uniform velocity is related to the 
terminal sedimentation velocity US of a multi-particle 
assemblage [ 141 through 

where 

For homogeneous shear (Couette) flow with respect to 
neutrally-buoyant particles, again with the direction of flow 
aligned with the axis 0 = 0,0 = n, in equation (Al) n = 2 
and p = 2. The various coefficients in the expansions of the 
solid spherical harmonics are [ 141 

with 

15 
AZ = -y-“(Yz-W2y3), 

14 

and 

W, = 5(1 f%) + 2YV -&), 

Y, = 2(1 +b2)+ 5y’(l -:/M. 

The “interfacial retardation viscosity” F2 is again defined 
in [14]. Note, that the velocity vector is now nondimen- 
sionalized with respect to Ga, and the Peclet number is 
accordingly defined Pe s Ga2/T,‘. 

II 

(Bl) 

W) 

c 
(B3) 

Q, y;i;;i;F;l)y. (B4, 

J;o,,g = i_Wz + $I), (B5) 

Jto,, = & ($2 + ILIL VW 

Jfl), = L Q2 V2(37;1,,f l/;l,>?) 

* 
+21-YV+GUr?) I i 1 (B7) 

Jfi,., = 
1 

Q1 I 
> u38) 

J&,, = f $ W,,(Y’ - 1) - UO,>(~Y~+ 3)+ 57;,,,~~], (B9) 
2 

Q2 = m(2$+3)+$&), (BlO) 

Jh 1” = T,1,,+ b,“Y, P11) 

Jill. I = - 1/;1),. (B12) 

(B13) 

(B14) 

(B15) 

Xd (l)o = 4 Jt’o,,$s’/%U -Y~)U -+$h (BI7) 
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PETYflRPHblE PA3JlO-IKEHMII B BMAE PIIDA J(JlR TEFUIO MJIM 
MACCOOISMEHA B KOHUEHTPMPOBAHHblX fiBYXQA3HblX CMCTEMAX 

C MAKPOYACTMUAMM I-IPM HM3KMX YMCJIAX nEK_JtE M PEfiHOJlbACA 

AHHoTauHn - 06ue peUIeHMn nnfl Tenno !-inH MaCCOO6MeHa npcr Manblx wcnax neKne B KOH- 

UeHTpMpOBaHHblX nByXI$a3HblX CWCTeMaX MaKpOYaCTMU,IlOrpy~eHHblX B npOM3BOnbHble CTOKCOBble 

IlOTOKll npM npOH3BOnbHblX rpaHWiHblX yCJlOt3MRX LlnR TeMnepaTypbl MnM KOHUeHTpaUUM,Ha~LleHbl 

B pe3ynbTaTe Mcnonb30BaHHfl perynnpHblx pa3noxeHMti Bo3MyueHMR 3aBwzuMoR nepeMeHHoii no 

cTeneHIfM 9Mcna IleKne. 

nOnyYeHbl peLUeHMfl,paBHOMepHO npMroaHble mm Bcex nOpnL(KOB annpoKwMaUwH B MHTepecy- 

wueR tiac o6nacTM npt4 ycnos~i4,~~o 0rpaHMqeHne ~a 3Ha4eHHe wcna neKne 0npenenfleTcfl pa3- 

MepaMH 3~0fi o6nacTu. PeLUeHMn npMcnoco6neHbl nnn cnysaes, npencTasnnIoluMx npaKTwecKMfi 

3iHTepec. 

B CJlyYae CHCTeMbl C MaKpOYaCTHUaMM, nOTpy~eHHblMM B OnHOpO,.,Hblk IIOTOK C JlMHetiHblM 

TeMIlepaTypHblM rpaL,rteHTOM B HanpaBneHMM nOTOKa, pe3ynbTaTbl CBOaRTCR K pe3ynbTaTaM, 

IlOnyYeHHblM MaKCBennOM LlJlfl 3+CjIeKTHBHOk NleKTpOlIpOBOflHOCTW CnOmHOii CMCTeMbl. HahneHbl 

TaKxenOKanbHble MCyMMapHble Me~l$a3HblenOTOKM L4 9MCna HyCCenbTa. 

Pe3yJlbTaTbl llOKa3blBatOT BnMSlHHe 06Ise~~ofi LlOJlM YaCTHU H 3aMeLlneHHe BHyTpeHHeti UMp- 

KyJlflUMM,Bbl3BaHHOenpMMeCbK) nOBepXHOCTHO-aKTHBHbIX BeUleCTB. 


