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Abstract— General solutions for small Peclet number heat or mass transfer in concentrated two-phase
particulate systems submerged in arbitrary Stokesian flows with arbitrary temperature or concentration
boundary conditions were obtained using regular perturbation expansions of the dependent variable in
powers of the Peclet number. Uniformly valid solutions for all orders of approximation were obtained
within the domain of interest, subject to a restriction imposed on the value of the Peclet number by
the dimensions of that domain. The solutions were specialized to cases of practical interest. For a
particulate system submerged in a uniform flow with a linear temperature gradient in the direction of
flow, the results reduced to those of Maxwell for effective electrical conductivity of a composite medium.
Specific relations were also obtained for local and overall interfacial fluxes and Nusselt numbers. The
results reflect the effects of particle volume fraction and retardation of internal circulation by

surfactant impurities.

NOMENCLATURE

a, radius of typical particle;

c, concentration;

D, molecular (binary) diffusivity;

G, rate of shear;

G(n,n'), spherical Green’s function defined in

equation (21);
g, acceleration due to gravity;
gm(n,n"), radial component of spherical Green’s
function, defined in equation (22);

J, interfacial flux;

k, thermal conductivity of homogeneous phase;

ker, effective thermal conductivity of two-phase
system;

m, distribution coefficient;

PP, associated Legendre’s function of degree n,
order p;

Q. overall rate of interfacial heat transfer;

r, radial distance;

N solid surface harmonic of degree n;

T, temperature;

t, unit vector in spherical coordinates system;

U, uniform reference velocity;

U,, terminal sedimentation velocity;

Vv, volume;

v, nondimensional velocity vector.

Greek symbols

o, thermal diffusivity;

B, viscosity ratio;

7, reciprocal nondimensional radius of

spherical cell;
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7, “interfacial retardation viscosity” defined
in [4];

¢, thermal or molecular diffusivity
(=aor{=D)

1, nondimensional radial distance;

0, cone angle;

s viscosity;

g, thermal conductivity, or molecular
diffusivity;

ps density;

O, volume fraction of dispersed phase;

o, azimuthal angle;

v, dependent variable (y = T or y = ¢).

Subscripts

r, radial;

a, cone;

@, azimuthal;

1,2,  values of dependent variable at antipodal

points of spherical cell;

<, >, in equation (22), the smaller, greater value

between n and 7',

Superscripts

o, indicates phase in general;

¢, pertains to continuous phase;

d, pertains to dispersed phase;

0, pertains to unperturbed field conditions.
Special signs

v, nondimensional differential operator

’

defined in equation (A7);
average quantity.
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INTRODUCTION

IN PREVIOUS publications [15, 16] it has been pro-
posed. that problems of fow Peclet number heat or
mass transfer in concentrated two-phase particulate
systems with dominant resistance to interfacial transfer
in the continuous phase, can be scolved by regular
perturbation expansions of the temperature or concen-
tration in powers of the Peclet numbers. The spherical
cell, of non-dimensional radius 7!, was employed to
statistically represent a multiparticle assemblage [3],
and uniformly valid solutions were obtained for all
orders of approximation within the domain of interest
1 < <y '. The solutions obtained were subject to
the restrictive relationship Pe « y < 1.

In the present work the previous analyses are general-
ized to multiparticle assemblages submerged in arbi-
trary Stokesian flows and subjected to boundary con-
ditions of the most general nature. Furthermore, the
analyses are extended to systems with resistances to
transfer in both phases of comparable magnitude. The
general solutions obtained reflect the effects on the
transfer processes of the volume fraction of the dis-
persed phase ® and of adventitious surfactant im-
purities, adsorbed at the particles” interfaces. The solu-
tions are then specialized to cases of specific interest,
and the results are employed to calculate rates of inter-
facial transfer, and average bulk properties, e.g. effective
thermal conductivity, of multiparticle systems.

It should be emphasized here, that in view of the
statistical nature of the spherical cell model employed
in the present analysis to represent the multiparticle
assemblage, all the results predicted by the present
theory should be regarded as ensemble-averaged
expected values.

THEORY
Statement of the Problem

Consider a uniformly-sized assemblage of rigid or
deformable particles approximately spherical in shape.
The assemblage is submerged in a steady arbitrary
Stokesian flow and is placed within an arbitrary
temperature or concentration field (here termed the
unperturbed field). The assemblage is substituted in the
statistical sense by a spherical cell of the continuous
phase material enclosing a typical particle of the dis-
persed phase.

With the simplifying assumptions of: (a} Steady
transport processes; (b) Slow viscous motion of incom-
pressible, homogeneous, isotropic, Newtonian fluids in
each phase; (c) Constancy of physical properties; (d)
Absence of sources and sinks; () Negligible viscous
dissipation, compressive work, radiative heat transfer,
and natural convection; {f} Negligible thermodynamic
coupling [17]; and (g) Negligible transfer-induced
interfacial fluxes [4]; the conservation of energy and
chemical species equations for each homogeneous,
isotropic phase « are unified into

Pev* V' = Vi), (1)
where in general
Pe* = Ga?/(. 2)

Cell boundory
ot reb=0¢"?

Representative
particle

F1G. 1. Geometry of spherical cell and
coordinate system.

In equation (1) = T for heat transfer and = ¢ for
mass transfer. Accordingly, in equation (2) { = a or
{ = D for heat or mass transfer, respectively.

The solutions of equation (1) must satisfy the follow-
ing boundary condition, consistent with the statistical
representation of a multiparticle system by the cell
model (see Fig. 1 for geometry of the system).

Y=y, 4) at n=y" (3)
They also must satisfy the following set of interfacial
matching conditions
Y= miy’, )
rfﬁ’jj_c = éd 6_1}/_" at
I o’
where &=k or =D for heat or mass transfer,
respectively. Note, that the distribution coefficient
m = 1 for heat transfer.

Furthermore, it is required that there be no singu-
larities associated with the solutions for y? at the origin.

— 1’
! )

Linearization Process
For small Peclet numbers, 1.e. Pe* « 1, the solutions
of equation (1) may be obtained by means of a regular
perturbation expansion of ¥* in terms of powers of
Pe”, namely

=3 (P, (6)
j=0
whereby the following set of linearized equations results

VeV = VYY) = VA, (7}

Application of the expansions (6) to the boundary and
the interfacial matching conditions (3)-(5) results in

- v 8
h’lio; i!f; ) } at n=yt, 8
Yin=v¥n=.. =¥ =0 9

Wy = 00 (10)
W 4 t p=1

Ny _ sja‘f"m’ at g 1)
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Here &; = m({/¢)’,
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It is apparent, that the requirement of absence of
singularities at the origin applies to all yf;,.

Zero Order Solutions
The zero order solutions are treated separately from
the higher order ones in view of the inhomogeneous
boundary condition (8). The solutions of the zero order
Laplace equations

(12)
in spherical coordinates are sums of solid spherical

harmonics, which are expanded in terms of solid surface
harmonics in the form

Vz‘//\:O) = 0,

Yoy = Z iont* +J70y . n7 )80, 4).  (13)
Assuming that the unperturbed field can also be rep-
resented in the form

Z O +I % N80, 4),  (14)
applying the boundary (8) and the interfacial matching
conditions (10) and (11), restricting the spherical har-
monics in the solution for the dispersed phase to
positive degree only in view of the requirement for the
lack of singularities at the origin, utilizing the orthog-
onality properties of solid surface harmonics, and
solving the resulting system of algebraic equations for
the unknown coefficients Jg,,, J&, ., and J&,, in
terms of the known, but yet arbitrary coefficients J°© and
JO, ., of the unperturbed field, one obtains

k4+1\¢&°
()1

JC e = " = ¢ y (15)
©) k+1 e: — iai S
Eh _'y & om
L |
u&wuﬂ,‘_nﬁﬂ)(g.d_;)
J(co)-k—lsz+1 0 1 , (16)
—_— —k+ DA ,,/k+1
|\ k J& m &om
and
/2
LS
(17

‘I(O)k"' .
k+1)\ & c 1
"I )iﬁ ) "‘+(%-:n—)v"“

General Solutions for Higher Orders of Approximation

A formal scheme of solutions is now presented for
the higher orders of approximation. For any jth order
equations

V-(V“'f/a(‘j‘x)) = Vz'/’tj), (18)

the left-hand side v* and yf;_;, are known functions,
such that V. (v*y/f;—,) = F§, are also known functions.
Then, equation (18) will have general solutions, com-
posed of homogeneous parts, resulting from the homo-
geneous Laplace equation V2, = 0, of the form

Yipy =

s+m

Zo(Ja>,wQ+Ja>_q,,n'“">sq(9,¢), (19)

and particular solutions of the Poisson-type equations
VZ‘//x = F%.
@ — 0

1
Vi, = Zif Fioln )G, ') dV". (20)

In solutions (20) the spherical Green function in
spherical coordinates is given in Jackson’s [ 7] notation
by

G )= Y, gulmn)SH6,9)Sa(0.¢),  (21)
m=0

and

gmn 1)

1 1 1
= L4+l (”"é ‘"n.zﬂ)(nrgu ”VZMHW’:)‘ (22)

The particular solution can in general be represented
in the form

stm

Vi = L XiumS(6.4) (23)
a=

Applying the linearized boundary and interfacial

matching conditions (9)-(11), utilizing again the or-

thogonality properties of solid spherical harmonics,

and solving the resulting set of algebraic equations,

one finds

ii)q =
Vin 077" = U 87 + Ty, 1(q0+ g8+ 3;)
gé;— ) —1)+6;29+ 1)
_ Tp, 90~} + Uy, 48— Vip, 95
g =)+ 6429+ 1)

. (24)

Jin-q 23

and

T, =

Ve "‘?Uo')q)('}’zq“ =D+ (T 71— Uy Qg+ 1)
q(0;— )M = 1) +6;2¢+1)

where the following functions were defined;
T(i)q = - X(L:i]q(y— ! )v
U, = 8; X5, (D — X, (1),

. (26)

and

Vi, = [BJXU).; (1) - XG,(0).

The derivations of expressions for X, () are pre«
sented in Appendix A. This completes the general
solutions for the higher orders of approximation.

Hlustrative Examples

1. Uniform unperturbed field

For the case of a uniform unperturbed field, in equa-
tion (13) k=0, So(6,¢) =1, and J°, = 0, whereby
¥? = J§. Then, from equations (15)—(17) one finds that,
aslong as £°/&% # Oand mis finite, S, = J§,J5%,_, =0
and J&,, = (1/m)J§. This indicates, that the tempera-
tures or concentrations in each phase are uniform,
that both contracting phases are in complete equilib-
rium, and that, accordingly, no interfacial transfer
takes place.



64 I. YARON

2. Linear gradient of the unperturbed field

(a) Uniform flow. Two different orientations of the
linear unperturbed field gradient with respect to the
direction of the uniform flow are considered.
(i) Linear gradient co- or countercurrent to the uni-
form flow. When the linear temperature or concen-
tration gradient of the unperturbed field is directed
parallel to the axis 6 =0, 6 ==n in equation (17)
k=0andk = 1, with §,(0, ¢) = cos . Then,

=3, =¥ )cos 0+, +y,)].

To order (Pe*)* the distributions ¢ and ¥ are then
obtained from equations (6), (15)—(17), (19), (23)-(26),
(A2) and (A3), whereby
Y= (Jfo, n+Ji). ,n 2 cos 0+,

£ Pe[(Ji),n* + 0y ,n 73+ Xy, G eos? 0—4)
+Ja+ I8 17+ X, ] FO(Pe), (28)

(27)

and

wd = ‘]Elo)l ncos 0+J€0)0
+ P [(JE), 07 + X)) 3 cos? 0—14)
+ e+ X{,] +O(Pet). (29)

In solutions (28) and (29) the first order terms should

be taken with the positive sign if the linear gradient
is cocurrent, and with a negative sign if countercurrent
to the flow, respectively. Derivations leading to solu-
tions (28) and (29) and the functions J&,,, Jé)_,,.--,
etc., are listed in Appendix B.
(ii) Linear gradient normal to the direction of uniform
flow. When the linear temperature or concentration
gradient of the unperturbed field is normal to the axis
§ = 0, = =, the distributions ¥ and ¥ are to order
(Pe*)? given by

¥ = (J&, n+J%)_,n *)sindsing+J,,
+Pet (Ui, +J6) 70+ X,)

x 3sinf cos Osin ¢ +O(Pe), (30)
and
!//d = J(d())lV]Sinesind’+-]?0)0+Ped%(J€1)2n2+X(dl)2)

x 3sinfcosfsinp+0(Pe’)?. (31)

In equations (30) and (31) the functions J§,,, J{)_,.
etc. are identical to those in equations (28) and (29).

(b) Homogeneous shear flow. With the linear tem-
perature or concentration gradient of the unperturbed
field oriented co- or countercurrently to the direction
of the flow, the distributions of ¥ and ¥’ to order
(Pe*)* are now

W = o) n+Jio)_ 0" 2ycos 0+J oy,
T Pe (i, +J6y o+ XG),)

x 15sin2¢ sin® 8 cos 0+ O(Pe)?, (32)
and
Y = Jio), ncos 0+, + Pel(J,n + X))
x 15sin2¢ sin® 6 cos 0+ O(Pe?)*. (33)

N d
In the.above equations J,),, JG,_,, Jio)- Ji0), and
J), again have the same significance as before. The
functions Jf,, J&,, J{,,, Xy, and X, are listed in
Appendix B.

Effective Thermal Conductivity

It is now possible to employ the various distributions,
given by equations (28)—(33) to evaluate average bulk
properties. Restricting the treatment to heat transfer,
the bulk property of effective thermal conductivity of
the multiparticle system is calculated for all the
illustrative cases from the standard operational defi-
nition as the ratio of the heat flux in a given direction
to the mean temperature gradient in that direction.
Thus

. 34
T ATray ! (34

The overall rate of heat transferred in the co- or
countercurrent situations is found in a manner, similar
to that employed for determination of the average
relative velocity between the phases [13], namely

e (T
0= —L fl k(:QF)e:m’zadndfﬁ
2z 1 aTd
*.[ jk"( > adnde. (35)
0 B 0=ni2

Introducing the values of 7¢ and T* from distributions
(28) and (29), and (32) and (33), it is found, that to
order (Pe*)? in both cases

kcﬁ
F =

kf[(2g+1)@*2—1)—2(%—1)( —1)+3}
A
Ky [(2[( +1> 1 1y

Expression (36) can be readily recognized as Maxwell’s
[10] result for the effective electrical conductivity of a
composite medium. It is not too difficult to verify, that
an identical result is obtained from distributions (30)
and (31) for the case of a linear temperature gradient
normal to the direction of the uniform flow. It is
interesting to note, that the first order convective terms
do not contribute in these cases to the effective thermal
conductivity.

. (36)

Interfacial Transfer
The local interfacial fluxes are defined by

(Mﬂ—ﬂ(w>.
V) n=1

For the case of a linear gradient of the unperturbed
field co- or countercurrent to the direction of the
uniform flow, the surface distribution of interfacial
fluxes is then, from equations (28) and (29)

(J)n=1 =
0
—'Cd<Jfo)l COSBiPQd{ [N?l)z-f-%(X(dlh),,:l]

(37

x (3 cos? 0—%)+(;~‘;1(xfl,“),,:1})+0(1ved)2. (38)
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Similarly, for a linear gradient normal to the direction
of the uniform flow

(J)rg=i =
8
»Cd {J}’o“Sin fsing+ Pe"{?‘ffl,; *%(Xfl)z}nﬁl]

x #sinf cos fsin g&} +OPP. (39

Finally, when the linear gradient is co- or counter-
current to the direction of the homogeneous shear
{Couette) flow

é
(J},,:; = —-Cd{.}fg;* cos B+ Ped[gjggz'%—g{}féh}qz;]

x 15sin 2 sin® § cos 8} +O{PeYY*.  (40)

It is interesting to observe, that the average inter-
facial fluxes defined by

) 1 iz =
Dyt = mL L (3),-1 8% sinBdfdg,

and the average Nusselt numbers for interfacial trans-
fer, defined by

Nu = (0= (FVF),

are found to order (Pe*)? for all the above cases to be
equal to zero.

DISCUSSION

Linearization of the unified conservation of energy
and chemical species equation by a regular perturbation
expansion of the dependent variables in terms of power
series of the small Peclet numbers permitted to obtain
general solutions for concentrated two-phase particu-
late systems, submerged in arbitrary, Stokesian flows
within arbitrary temperature on concentration unper-
turbed fields. Convergence of the solutions for any order
of approximation was achieved by satisfying the non-
homogeneous boundary condition in the zero order of
approximation solutions, and subjecting higher order
solutions to homogeneous boundary conditions. The
general temperature or concentration distributions
derived are uniformly valid within the domain of the
spherical cell employed to statistically represent the
multiparticle assemblage, subject to the restrictive
refationship Pe « y < 1. The femperature or concen-
tration distribution, and ether quantities derived there-
of should, of course, be viewed as average expected
quantities, characteristic, in the statistical sense, of the
entire system, rather than actual distributions, likely
to be encountered around any particular particle.

The general solutions were first specialized to a
system, placed within a uniform unperturbed field. It
was shown, that, unless it be assumed that the con-
ductivity or diffusivity of the dispersed phase is infinite,
there can be no interfacial transfer between the phases.
Since this conclusion involves the leading term of pure
radial conduction, it applies equally well to the case
of a single particle submerged in an infinite, ynbounded
field, with uniform conditions at infinity. Hence it seems
that those numerous analyses (e.g. [1,8] etc) which

HMT Vol 1% No. 1R

have the case of pure radial conduction from an
isothermal particle as a starting point for Jow Peclet
number expansions of one kind or another, are in
essence physically unrealistic.

The specialization of the general solutions next to
cases, in which the multiparticle system was placed in
an unperturbed field with a linear gradient, showed
that the leading term for zero Peclet number i
identical with that given by Maxwell for electric con-
ductivity of composite medinm. Maxwell claimed that
his results apply strictly to dilute systems, in which
interaction effects between particles are not taken into
account. However it has been shown since in numerous
investigations{e.g.[2, 5, 11§ etc.) that experimental data
on effective thermal conductivity in concenirated sys-
tems are also adequately correlated by Maxwell’s
formula, As a point of interest, in Table 1 the recent
data of Singh et al. [12] for the effective thermal con-
ductivity of metal wicks, saturated with water, is com-
pared with values, predicted from equation (36}. The
satisfactory agreement between the experimental data,
and theory, particularly in the range of higher con-
centrations is noteworthy.

Table 1. Effective thermal conductivity of water
saturated wicks, data of Singh ef al. [ 12]

Keﬁ ;‘kc
Caleulated,

Wick Porosity (% Experimental eqguation (36}
N1 200 815 011 0131
Ni 200 439 0453 0-463
Ni 200 334 0-506 0-575
Ni 200 288 0577 63

43088 759 020 0202
430SS 826 016 0-125

In the expressions derived for effective thermal cons
ductivity and surface-averaged interfacial transfer, in
the cases considered, first-order effects due to convec-
tion are absent. However, it is evident from previous
investigations of cases with dominant resistance in the
continuous phase [15], that second-order terms do
appear. Accordingly, the expressions will differ from
case to case. Their use in situations, other than those
for which they have been derived, is, therefore, un-
warranted, even on an ad hoc basis. It is conceivable,
that in other cases, not considered here, even first-order
convective effects may appear, which may make in-
discriminate use of values, based on the zero-order pure
conduction case, even more €rroneous.

Acknowledgement —This work was made possible through
NASA Grant No. N(GGL-36-003-064 and in part through a
grant from the Yad Avi Hayishuv Foundation,

REFERENCES

1. A. Acrivos and T, D. Taylor, Heat and mass transfer
from single spheres in Stokes flow, Physics Fluids §, 387
{1962).

2. 8. €. Cheng and R. 1. Vachon, The prediction of the
thermal conductivity of two and three phase sofid
heterogeneous mixtures, Int. J. Heat Mass Transfer 12,
249 (1969).



66

1L

12,

13

14,

I. YARON

B. Gal-Or, On motion of bubbles and drops, Can. J.
Chem. Engng 48, 526 (1970).

. B. Gal-Or and 1. Yaron, Diffusion drag upon slowly

evaporating droplets, Physics Fluids 16, 1826 (1973},

. R.L.Gorringand S. W, Churchill, Thermai conductivity

of heterogeneous materials, Chem. Engng Progr. 87, 52
{1961),

. 8. Haber and G. Hetsroni, The dynamic of a deformable

drop suspended in an unbounded Stokes flow, J. Fluid
Mech. 49, 257 (1971).

. 1. D. Jackson, Classical Electrodynamics. p. 78, Wiley,

New York (1962).

. R. Kronig and J. Bruijsten, On the theory of the heat

and mass transfer from a sphere in a flowing medium
at low values of Reynolds number, Appl Scient. Res.
A2, 439 (1951).

. H. Lamb, Hydrodynamics, 6th edn, p. 596. Dover, New

York (1945).

. §. C. Maxwell, A Treatise on Electricity and Magnetism,

3rd edn, Vol. 1, p. 440. Dover, New York (1954}

T. Saegusa, W. Wakao, Y. lida and K. Hashiguchi,
Thermal conductivity of solid-liquid suspensions,
Kagaku Kogaku 36, 193 (1972).

B. S. Singh, A Dybbs and F. A, Lyman, Experimental
study of the effective thermal conductivity of liquid
saturated sintered fiber metal wicks, Int. J. Heat Mass
Transfer 16, 145 (1973},

1. Yaron and B. Gal-Or, Relative velocities and pressure
drops in clouds of drops, bubbles, or solid particles,
AJCHE. JI 17, 1064 (1972),

1. Yaron and B. Gal-Or, On viscous flow and effective
viscosity of concentrated suspensions and emulsions,
Rheol. Acta 11, 241 (1972),

. L. Yaron, Regular perturbation solutions for low Peclet

number heat or mass transfer in two-phase particulate
systems, FTAS/TR 73-88. CWRU (March 1973).

16. 1. Yaron, Regular expansion solutions for small Peclet
number heat or mass transfer in concentrated two-phase
particulatc systems, Proc. 5th Int. Heat Transfer Conf,
Vol. 2, pp. 208-212, Tokyo (1974).

i7. I Yaron and B. Gal-Or, Similarity rules and degrees
of thermodynamic coupling in flowing systems, Appl.
Scient. Res. 30, 17 (1974),

APPENDIX A

In the linearized equations (7) the dimensional velocity
vector V* is given by Lamb’s [9] general solution of the
steady creeping flow equations in spherical coordinates

o

Vi o E

a= -

n+3)
Vx(ryn)+ Vi + e P VP
[ (rzn) 2pM{n+ 3)(2}34—3) "

TS ’”}‘ (4D

Recall that the solid spherical harmonics are expanded
in terms of solid surface harmonics in the following manner:

P: = #d??na‘ EAn Sﬂ(gs d)}v P: = ,Llc?]"HQ]D”S,(G, ¢'}s
Pl y =y " a7 G50, 0) ¢ = n"aB.S,(0, b
Bn = n"ak, S0, @), L. =y ""laH,S5,(0, ¢
In = 1"CaS0, @) g = 1"F, S0, ),
Yon-1 = 1" LS, P,

in these expansions, the coefficients A4,, By, ..., J, are ex-
pressed in terms of coefficients o, B, ..., Y-, of a known,
although as yet arbitrary flow field. For lack of space, these
coefficients are not listed here, but may be found in {14]. It
shouid be noted, that the products 4,S,, B,S,...., rep-
resent expansions of the general forms

4,50, ¢) = 3. (A4Fcos p + AL sin p)P(sin ),
p=0

Using now express‘ion (A1) for the velocity vector and after some rather lengthy computations it is found, that

X(I)a

'fi),,(”l)

cuPIDIDN

J‘]J\2:’ (‘n
i nm [} 4]

<=0

Frn

7(2M 3),-

T4n-1
[(ﬂn Y A W R /W (a1

S Z {qn!{J{} ;)3{{??*“2“?})??,5*'[ 2{&4‘?*{‘}}1}’"4‘1“ }+

n*l]

'2 o {Yi;~1),€*f Kf{f/"‘“’ "M‘I)]}

{ N
B e (L [+ 3 = 2m D ’}+X(1_,),(4’)[n(n+3}n'“~2{n+I)ty’“‘zj})}

n+1)
X gh(n, 11850, ¢y sin @ A0’ dgp' dy’.

gs‘m j‘rﬂx *’ g\m
? H W0

+n-1

t
TR & *

FLLIGo T TR Gy T T X ] l

1 @
(g{E [m+1+ 3y a-n.n'"*"‘z+(n~l>ij-1>,...n’"""‘*"+~:~;--,~(Xf,-m,<n'>n'"-l)]

I+n

+ 2
s=0

{Fn[-ff;ﬂ)ﬂi'!”'{‘*’ij-nq. AT X G ]

) . 1
—{n+1)}H, [(1«»)13_“,;{'“"“5—£;s+£+r}Jg,-_”_,_,:; maie 4+§’_5 i ,(X(_, orm T 2)}

(nD,,

+ l
(2n+3)
{n+1)G,
22n+ 1)

i
{{WH’RUU N AR N U0 PN 2'5';;“-”{)({1 047 WMH)}

1o -
[(l—n+2).lfjmi,,r{’“"””‘ ~{n+1-1JG-y .,_ﬂ?'_"""24‘;172*;%77(3'51—1),('7')77 ")]%
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In expressions (A2) and (A3) the notation of Haber and
Hetsroni [6] is adopted to define

n+k
58 = ) gits, (Ad4)
n+k
V.(8Vs) = ¥ ks, (A5)
and
n+k—~1
V.8V xes)y= ¥ fs, (A6)
with the nondimensional differential operator
é 1 0
V=t — _— A7
”ao+t“’sinea¢ (A7)
APPENDIX B

I

For uniform flow parallel to the axis § =0,0 =, in
equations (A1) n = 1 and p = 0. The various coefficients in
the expansions of the solid spherical harmonics are [16]
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Here, 7, is a parameter, termed the “interfacial retardation
viscosity”, which reflects the effects of adventitious surfactant
impurities, adsorbed at the interface, on the rate of internal
circulation within the particle. The functional dependence
of this parameter on the mechanisms of surfactant adsorp-
tion—desorption and surface diffusion and convection is fully
discussed in [14].

The velocity vector is nondimensionalized with respect to
the uniform velocity U, and the Peclet number defined by
Pe = aU,/{. Note, that the uniform velocity is related to the
terminal sedimentation velocity U; of a multi-particle
assemblage [14] through
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For homogeneous shear (Couette) flow with respect to
neutrally-buoyant particles, again with the direction of flow
aligned with the axis 8§ = 0,0 = =, in equation (Al) n=2
and p = 2. The various coefficients in the expansions of the
solid spherical harmonics are [14]
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with

and

The “interfacial retardation viscosity” j
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, is again defined

in [14]. Note, that the velocity vector is now nondimen-
sionalized with respect to Ga, and the Peclet number is
accordingly defined Pe = Ga*/¢.
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SOLUTIONS PAR DEVELOPPEMENT EN SERIE DU TRANSFERT THERMIQUE QU
MASSIQUE AUX FAIBLES NOMBRES DE PECLET ET DE REYNQLDS DANS LES
SYSTEMES BIPHASIQUES PARTICULAIRES CONCENTRES

Résumé— Des solutions générales de transfert de chaleur ou de masse aux faibles nombres de Péclet
dans des systémes biphasiques particulaires concentrés, plongés dans un écoulernent arbitraire de fluide
de Stokes avec des conditions aux Timites arbitraires sur les températures ou les concentrations, ont é1é
obtenues en utilisani des développements en série de perturbation de Ia variabie dépendants saivant
les puissances du nombrs de Péclet. On a obtenu dos solutions valables uniformément, & tout ordre
d*approximation dans ke domaine considérd, 4 lIa restriction prés imposée sur la valeur du nombre de
Péclet par les dimensions de ce domaine. Les solutions ont été appliquées & des cas d'intérét pratigue.
Pour un systéme particulaire plongé dans na &coulement uniforme avec un gradient de température
Iinéaire dans la direction de V'écoulement, les résultats se réduisent & ceux de Maxwell pour la con«
ductivité électrique effective d’un milieu composite. On a également obtenu des expressions particuliéres
pour les flux interfaciaux et les nombres de Nusselt locaux et globaux. Les résultats font apparaitre leg
effets de la fraction volumique des particules et le retard A la cirgulation interme di aux impuretés
tensioactives,

i REGULARE EXPANSIONSLOSUNGEN FUR WARME- ODER
STOFFUBERTRAGUNG IN KONZENTRIERTEN ZWEIPHASEN PARTIKULARSYSTEMEN
BEI KLEINEN PECLET- UND REYNOLDS-ZAHLEN

Zusammenfassung— Fir den Wirme- oder Stoffitbergang bei kleinen Péclet-Zahlen in konzentrierten
Zweiphasen Partikuliivsystemen in belicbigen Stokes’schen Strémungen mit beliebigern Temperatur-
oder Konzentrationsrandbedingungen wurden allgemeine Lisungen orhalten mit Hilfe der reguliren
Stérungsexpansion der abhéngigen Variablen in Potenzen der Péclet-Zahl. Einheitlich giiltige Losungen
fiir alle Naherungsordnungen ergaben sich fiir den interessierenden Bereich mit einer Einschrdnkung fiir
die Werte der Péclet~Zahl, die aus den Dimensionen des Bereichs herriihrt. Die Losungen wurden auf
Falle praktischen Interesses beschrinkt. Fiir ein partikuldres System in einheitlicher Strémung mit einem
linearen Temperaturgradienten in Stromungsrichiung reduzierten sich die Frgebaisse aof jene von
Maxwell fir die effekiive slekirische Leitfihigkeit in clnem zusamsmengesetzien Medium. Spezielle
Beziehungen wurden auch ermittelt fiir Srtliche und Gesamtiliisse und fiir Nusseli-Zahlen. Die Frgebnisse
geben auch die Einfliisse des Pastikel-Vohumen-Anteils und die Verzdgerung der inneren Zirkulation
durch Oberfidchenverunreinigungen wieder,




Heat or mass transfer in two-phase particulate systems

PETYJNSAPHBIE PA3JIOXKEHWA B BUAE PAJA OJIA TEIUJIO UJITH
MACCOOBMEHA B KOHUEHTPUPOBAHHLIX NBYX®A3HbIX CUCTEMAX
C MAKPOYACTULUAMMU TTPU HU3KUX YNCITIAX MEKJIE 1 PEMHOJIbACA

Andorauyua — OOuve peuleHds O/st TENJIO MM MAccooOMeHa 1pu Manbix uucnax Ilekiie B KOH-
LEHTPUPOBAHHbBIX ABYX(A3HbIX CHCTEMAX MAKPOYACTHL, NIOTPYXKEHHBLIX B POU3BOAbHbIE CTOKCOBbIE
MOTOKH MPHU MPOM3IBONLHLIX TPAHUYHBIX YCIOBUAX [JIs TEMIIEPATYPb! WY KOHLUEHTPALIUK, HAIEeHbI
B PE3YyJIbTATe UCMOAB3IOBAHUA PEryISIPHBIX PA3JIOKEHUN BO3MYLIEHUS 3aBUCHMOM NEPEMEHHON TIO
crenensaM uucna [lexne.

IMosiyueHbl pelieHUs, pABHOMEPHO NPUTONHbIE AJI BCEX MOPAAKOB ANMPOKCHMAUNU B MHTEPECY-
olLei Hac oBIacTH NpH YCIIOBMM, YTO OrpaHMYeHHe HA 3HaveHue uucna [lekne onpenensercs pas-
MepaMH JToik obnactu. PeweHus npucnocobnedbl OMs Clly4aes, NPEACTABAAIOUINX NPAKTHUYECKHH
HHTEpEC.

B cnyvae CMCTeMbi ¢ MaKpOYacTULAMH, NMOTPYKEHHLIMH B OAHOPOAHLIA TIOTOK € JHUHEHHBIM
TEMMEpaTypHbIM TPAAMEHTOM B HANpPaBlEHUW TNOTOKA, PE3ynbTaThl CBOAATCH K pelynbraTam,
noayveHHbIM Makcsensiom s hHeKTHBHON 3MEKTPONPOBOAHOCTH CNOKHONW cucTembl. Haitnenwbl
TAKKe JIOKa/bHble U CYMMapHbie MexdaiHble NTOTOKK K yucna Hyccenbra.

PesynbraThl NOKa3biBalOT BIMAHUE OOBEMHOW I10JM HaCcTHL M 3aMENNEHHE BHYTPEHHEN uup-

KyJSiidH, BLI3BAHHOE MPUMECHIO MOBEPXHOCTHO-AKTHBHBLIX BELLECTS.
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